Analysis of the early-flowering mechanisms and generation of T-DNA tagging lines in Kitaake, a model rice cultivar
نویسندگان
چکیده
As an extremely early flowering cultivar, rice cultivar Kitaake is a suitable model system for molecular studies. Expression analyses revealed that transcript levels of the flowering repressor Ghd7 were decreased while those of its downstream genes, Ehd1, Hd3a, and RFT1, were increased. Sequencing the known flowering-regulator genes revealed mutations in Ghd7 and OsPRR37 that cause early translation termination and amino acid substitutions, respectively. Genetic analysis of F2 progeny from a cross between cv. Kitaake and cv. Dongjin indicated that those mutations additively contribute to the early-flowering phenotype in cv. Kitaake. Because the short life cycle facilitates genetics research, this study generated 10 000 T-DNA tagging lines and deduced 6758 flanking sequence tags (FSTs), in which 3122 were genic and 3636 were intergenic. Among the genic lines, 367 (11.8%) were inserted into new genes that were not previously tagged. Because the lines were generated by T-DNA that contained the promoterless GUS reporter gene, which had an intron with triple splicing donors/acceptors in the right border region, a high efficiency of GUS expression was shown in various organs. Sequencing of the GUS-positive lines demonstrated that the third splicing donor and the first splicing acceptor of the vector were extensively used. The FST data have now been released into the public domain for seed distribution and facilitation of rice research.
منابع مشابه
Isolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)
In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...
متن کاملانتقال ژنهای مقاوم به بلاست Pi-1 و Pi-2به برنج رقم طارم دیلمانی
Rice cultivar Tarom Dilamani becauded a fragrance, flavor, cooking and marketing is a qualitative rice in Iran. This cultivar have high susceptibility against blast disease (Magnaporthe grisea). One of the important trouble producers of the Dilamani's rice cultivar is chemical control against blast disease and cause poisonous pollution of natural environment. The best manner in order to control...
متن کاملPhysiological and biochemical evaluation of sixth generation of rice (Oryza sativa L.) mutant lines under salinity stress
In order to physiological and biochemical evaluation of seventh generation of rice mutant tolerant lines under salinity stress, an experiment was carried out as split plot arranged in a Completely Randomized Design with four replications. Main factor of experiment includes three levels of salt stress (0, 45, 75 mmol/l) and sub factor include 5 local rice mutant lines contain Tarom Hashemi 1, Ta...
متن کاملStudy of Biochemical and Molecular Changes of Iranian Rice Cultivars in Interaction with Bacterial Pathogen Xanthomonas oryzae pv. oryzae Causes Leaf Blight Disease
Rice bacterial blight caused by Xanthamonos oryzae pv. oryzae is one of the most destructive bacterial diseases of rice in some areas of rice cultivation in the world, especially in the tropics of Asia. The low efficiency of disease management methods, especially chemical methods, has led to more research on recognizing resistant cultivars and understanding resistance mechanisms through the stu...
متن کاملThe Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies.
The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 64 شماره
صفحات -
تاریخ انتشار 2013